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Experimental validation of a critical domain
size in reaction–diffusion systems with

Escherichia coli populations

Nicolas Perry†

Department of Physics, Duke University, Durham, NC 27708, USA

In a one-variable, finite size reaction–diffusion system, the existence of a minimal domain size
required for the existence of a non-zero steady state is predicted, provided that the reaction–
diffusion variable has a fixed value of zero at the boundaries of the domain (Dirichlet
boundary conditions). This type of reaction diffusion model can be applied in population
biology, in which the finite domain of the system represents a refuge where individuals can
live normally immersed in a desert, or region where the conditions are so unfavourable that
individuals cannot live in it. Building on a suggestion by Kenkre and Kuperman, and using
non-chemotactic E. coli populations and a quasi-one-dimensional experimental design, we
were able to find a minimal size (approximately 0.8 cm) for a refuge immersed in a region
irradiated with intense UV light. The observed minimal size is in reasonable agreement with
theory.

Keywords: reaction–diffusion; pattern formation; bacterial growth; chemotaxis
1. INTRODUCTION

Escherichia coli and other bacterial species have been
observed to formagreatvarietyofpatternsundervarious
environmental conditions and stresses (Ben-Jacob et al.
1995, 2000; Budrene & Berg 1995; Matsushita et al.
1998). In an effort to understand the collective dynamics
of bacteria, various authors have proposedmathematical
models in which reaction–diffusion is usually the model
of choice, as reaction–diffusion models are capable of
pattern formation through the Turing instability. In this
paper, we present experimental confirmation of a
theorem for a general reaction–diffusion equation in
one-variable using populations of a non-chemotactic
strain of E. coli bacteria. Building on a suggestion by
Kenkre & Kuperman (2003), in which the authors
proposed a way to test the validity of the Fisher equation
(a special case of the reaction–diffusion model we
considered) when applied to bacterial populations, we
used a slightly modified version of an experimental
setup initially used by Lin et al. (2004) and show that
our results can verify the general reaction–diffusion
theorem.

A simple one-variable reaction–diffusion system
consists of a single equation,

vcðx; tÞ
vt

ZDV2cðx; tÞC f ðcðx; tÞÞ; ð1:1Þ

where c(x, t) is a local concentration. The first term on
the right corresponds to the random motion of particles
address for correspondence: Biophysics Research
iversity of Michigan. 930 N University Avenue, Ann
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or individuals, where D is the coefficient of linear
diffusion. The second term corresponds to the reaction
function f(c). When applied to population biology,
c(x, t) corresponds to a single species population and
f(c) corresponds to the growth (and death) of the
population. In the case of a finite domain in which c(x, t)
has a fixed value of 0 at the boundaries of the domain
(Dirichlet boundary conditions with value 0), the finite
domain is interpreted as a refuge, in which a population
can grow normally, immersed in a desert where the
population cannot live and an individual dies as soon as
it leaves the refuge. Given these boundary conditions
in a one-dimensional space, and if f(c) meets the
conditions f(0)Z0 and f 0(0)O01 it has been shown
that the refuge size should be greater than a critical
size in order to support a non-null steady state
(Skellam 1951; Murray 1993; Kenkre & Kuperman
2003) or, in biological terms, a steady population.
The value of the critical domain size depends on the
diffusion and growth function of the system, and is
given by

Lc Zp

ffiffiffiffiffiffiffiffiffiffiffi
D

f 0ð0Þ

s
; ð1:2Þ

where f 0ð0ÞZ df
dc jcZ0.

In any realistic model, the growth function should
make the population saturate, as the population cannot
grow forever in a closed system. One common
J. R. Soc. Interface (2005) 2, 379–387
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1These conditions are standard for population growth without an
external source, and state that a population can only grow from a non-
zero initial population.
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saturating growth function is logistic growth,

f ðcÞZ acðx; tÞ 1K
cðx; tÞ
K

� �
; ð1:3Þ

where a corresponds to the linear birth rate and K
corresponds to the maximum concentration possible in
the system, called the carrying capacity. In this special
case, the reaction–diffusion equation is known as the
Fisher equation, which was introduced to model the
spread of an advantageous gene in a population
(Fisher 1937). Skellam (1951) and Kenkre & Kuperman
(2003) showed how it is possible to find exact solutions
of the steady state of the Fisher equation with Dirichlet
boundary conditions in terms of Jacobi elliptic func-
tions, and, from these solutions, the same result for the
size of a critical domain (equation (1.2)) is obtained.

However, Dirichlet boundary conditions are an
idealization of a real boundary, be it natural or
fabricated. A more realistic approach to study critical
domain sizes would be to use an equation in which
individuals outside the refuge die at a certain rate so
that the population outside the refuge need not be zero,
but could account for individuals who are dying. Decay
and diffusion could create a steady population outside
the refuge. An example of such a system could be a
modified Fisher equation in which the population grows
logistically inside the refuge and dies at an exponential
decay rate outside the refuge (we will show later that
this is the case in our experiments). In this case, the
modified Fisher equation would be

vcðx; tÞ
vt

ZDV2cðx; tÞCacðx; tÞ 1K
cðx; tÞ
K

� �

inside the refuge;

vcðx; tÞ
vt

ZDV2cðx; tÞKadcðx; tÞ outside the refuge;

ð1:4Þ

where a is the growth rate inside the refuge, ad is the
death rate outside the refuge, and D is the diffusion
coefficient (assuming same D inside and outside the
refuge).

In this case, no boundary conditions of the entire
domain are specified, as we consider only the case where
adOa. In this case, the bacteria die soon after leaving
the refuge, and, therefore, they do not travel too far
from the refuge boundary. If the system is much larger
than the refuge itself, the boundary conditions do not
affect the dynamics of the bacteria. It should also be
noted that this simple model does not take into account
the possibility of ‘damaged’ bacteria inside the refuge:
some bacteria that go outside the refuge but later come
back inside, before the UV irradiation kills them. This
damaged bacteria may constitute a distinct population
(with different traits) inside the refuge, for which the
model does not account.

Ludwig et al. (1979) showed that for the model of
equation (1.4) the size of a critical domain would
become

Lc Z 2arctan

ffiffiffiffiffiffi
ad
a

r� � ffiffiffiffiffi
D

a

r
: ð1:5Þ
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This equation shows that if ad/N, then this equation
becomes equation (1.2). If ad has the same value of a,
the size of the critical domain is reduced by half. Note
that the same result applies to any function f(c) that
meets the conditions f(0)Z0 and f 0(0)O0, since the
result is obtained by linear stability analysis.

To investigate the existence of a critical domain size
in a biological system we used an experimental setup
initially used by Lin et al. (2004), in which the refuge
was used to verify the existence of a phase transition
between localization and extinction in E. coli popu-
lations when there was a convective flux that drove the
bacteria outside the refuge.

In this setup bacterial populations live in a quasi-
one-dimensional channel that is irradiated from the top
with intense UV light, except for a small region in the
centre, which is shielded from the UV light with a mask.
We used E. coli bacteria for the experiments because of
the fast growth of E. coli in microbiological media,
which allowed us to conduct an experiment in a
reasonable amount of time. Since the bacteria do not
die instantly under the UV light, the conditions are
more similar to equation (1.4) than to Dirichlet
boundary conditions.

In this work, we compared the experimental results
with equation (1.5). In §2, we present a detailed
description of the experimental setup. In §3, we show
how we obtained the parameters a, ad, D and K
experimentally in independent measurements. In §4, we
present the results obtained, including the patterns
obtained for various refuge sizes; in §5, we discuss the
significance of the results and their implications.
2. MATERIALS AND METHODS

The experimental setup consisted of a glass channel,
constructed with two glass pieces of 1.25!10!1/16 in.
that sandwiched a Plexiglas spacer in a U shape,
creating a rectangular container of dimensions
23!1.2!0.3 cm. The channel was held upright by a
metallic base. Under the metallic base, a device that
held a laser diode aligned with a photodetector could
be moved along the direction of the channel to
obtain concentration profiles in space. A schematic is
presented in figure 1.

All this setup was placed inside an incubator to keep
the temperature at 37 8C. On top of the incubator, and
right above the channel, a mercury UV lamp (Ster-L-
ray GT486L, lZ254 nm) was placed to illuminate the
channel. The UV light was able to penetrate the
incubator through a fused silica window. To achieve a
collimated, uniform illumination of the channel, a black
lighting control grid (108 angle spread) was placed
between the fused silica window and the channel. The
intensity produced by the UV lamp at 5 cm (the
distance between the top of the channel and the lamp)
from the lamp was 1750G80 mW cmK2. However, the
collimator reduced the intensity to 23% of the original,
so the UV intensity at the top of the channel was
400 mW cmK2. The channel was built with the length
much greater than its width and height to create a
quasi-one-dimensional space so that we could compare
concentration profiles with one-dimensional models.

http://rsif.royalsocietypublishing.org/
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Figure 1. Schematics of the experimental setup.
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The channel was filled with 5 ml (so that the actual
height of liquid was 0.72 cm) of M9 medium sup-
plemented with 4 g lK1 casamino acids, 1 mg lK1

Thiamine and 0.1% agar. M9 was chosen instead of
other media because it is colourless, and UV light can
penetrate it. With LB broth or tryptone broth, the UV
light penetration is very poor. M9 supplemented with
casamino acids and vitamins allowed fast growth,
almost as fast as with nutrient broths. The agar was
added to the solution to avoid external convection while
still allowing bacteria to swim. To avoid evaporation of
the medium, the incubator was held at high relative
humidity (more than 75%), and a thin layer of mineral
oil was applied above the medium before inoculation.

To obtain concentration profiles (concentration
versus distance), the laser/photodetector scanned the
channel length in 2500 steps, 0.095 mm apart, in a total
time of 8 min and 30 s. In each step, the amount of light
from the laser beam transmitted through the bacterial
suspension was measured, the same way that a
spectrophotometer works. The logarithm of the ratio
of the initial and transmitted light is proportional to the
concentration at that point, according to the Beer–
Lambert law. The signal from the photodetector was
fed into a computer to produce concentration versus
distance data. To ascertain that the bacterial concen-
tration was linear with the photodetector signal in the
whole range of concentrations, we calibrated the
photodetector signal using known dilutions and direct
plate counts. The calibration is shown in figure 2. Our
laser wavelength was 670 nm. We note that the
concentration was linear with the signal over the
whole range of concentrations in our case (as opposed
to linearity in a spectrophotometer), because the width
of the channel was 0.3 cm, as opposed to 1 cm width in
standard cuvets.

The motion of the bacteria E. coli has been studied
extensively (Berg & Brown 1972; Berg 2000). In a
medium free of attractants, bacteria randomly
J. R. Soc. Interface (2005)
alternate ‘runs’ (quasi-straightforward motion) with
‘tumbles’ (random change of direction without trans-
lation), making their overall motion a random walk.
However, in the presence of attractants (as in most
microbiological media), the motion of bacteria is biased
toward attractant molecules. Therefore, the view of the
motion of bacteria as a random walk is not clear
anymore. The above considerations justify our choice of
E. coli strains.

At first we wanted to use the E. coli strain RW120
(Ho et al. 1993), the same strain used by Lin et al. (2004),
because the DNA repair is defective in this strain. Thus,
the death rate under the UV lamp would be higher than
normal. However, RW120 is a wild-type of E. coli for
chemotaxis (this means that even though the genome
has been modified for DNA-repair mechanisms, its
mechanisms for chemotaxis remain the same as
naturally occurring E. coli), and after growing for
some time in the centre of the channel, E. coli RW120
forms a couple of chemotactic bands. These bands are
swarms of bacteria that move outward very quickly, in
response to their attraction to serine and aspartate.
Adler (1966) was the first to observe and analyse such
chemotactic bands; Keller & Segel (1971) were the first
to propose a mathematical model for these bands. The
model of Keller and Segel was later shown to be the
continuous limit description of themotion of individuals
in a reinforced random walk, similar to the trajectories
observed for chemotactic E. coli under a microscope.
(See Hillen & Othmer (2000) and references therein.)

In molecular biology terms, chemotaxis is under-
stood to be a consequence of E. coli chemoreceptor
proteins binding to attractant molecules (Parkinson
1993; Berg 2000). Mathematically, chemotactic bands
correspond to travelling pulses, which cannot be
solutions to equation (1.1). An equation like equation
(1.1) allows the formation of travelling fronts, as the
population spreads out, but not travelling pulses
(Edelstein-Keshet et al. 1998). The observation of
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travelling pulses (figure 3) means that the bacteria do
not move randomly and, therefore, the system could
not be a simple one-variable reaction–diffusion system.
We then decided to use the strain RP9535 (Sanatinia
et al. 1995) which cannot respond to chemotactic
signals, and whose motion is free from tumbles: every
change in direction is due to collisions with other cells
or molecules. This makes the motion of bacteria more
random, making the reaction–diffusion model more
valid, even though the death rate under the UV light is
about eight times lower than for RW120, and the
velocity of spread from the centre in our medium is
about 1/10 of that of RW120. See figure 3.
3. PARAMETER ESTIMATION

To calculate the diffusion coefficient of RP9535, 10 ml
of saturated solution were spun down in a microcen-
trifuge to reduce the total volume to 0.5 ml. A volume
of 20 ml of this highly concentrated solution was slowly
pipetted down at one end of the glass channel, which
was filled with fresh medium. We observed the spread
of the bacteria from the border for only 1.5 h, to
minimize the effect of bacterial growth. By calculating
the mean-square-distance of spread from the end point
of the initial high concentration at the end of the
channel versus time and comparing this mean-square-
distance versus time with numerical simulations of the
diffusion equation vcðx; tÞ=vtZDðv2cðx; tÞ=vx2Þ, we
estimated DZ(2.2G0.15)!10K5 cm2 sK1. Other esti-
mates of E. coli diffusion coefficients were done by Lin
et al. (2004), although in that case the estimation was
done for E. coli RW120, whose motion can be far from
random, as explained above.

To calculate the value of the death rate under the
UV light, as well as the carrying capacity of the
medium, we used a glass channel with the same width
and height of the original channel, but whose length was
J. R. Soc. Interface (2005)
only 6 cm. We placed 2 ml of saturated solution into
this small channel and then turned on the UV light.
Every 30 min, a sample of 10 ml was taken after
stirring the solution to assure uniform concentration.
The concentration was calculated by the standard
method of plate counting. From the graph of bacterial
concentration versus time, the death rate was
adZ(9.46G0.45)!10K4 sK1. The carrying capacity of
the medium can be simply estimated as the maximum
bacterial concentration observed in a test tube, which
was KZ(5.5G0.4)!108 cells mlK1. Note that the
carrying capacity has no effect on the critical size
calculation.

The growth rate of bacteria was measured from the
total growth observed in the experimental setup, with
the UV light switched off. The total growth was the
sum of the concentrations at each spatial point. From
the growth curve obtained, the growth rate was
aZ(2.23G0.2)!10K4 sK1. The linear fits used to
obtain the parameters are shown in figure 4.
4. RESULTS

Each experiment was begun by dipping a sterile needle
into a saturated bacterial solution and then submerging
the tip of the needle into the centre of the channel,
which was filled with microbiological medium (see §2
for details). The UV light illuminated the channel
uniformly from the top, except for a small region in the
middle where a mask blocked the UV light (the refuge).
The size of masks that we used were 0.8, 1, 1.2, 1.5, 2
and 4 cm. We did three runs for each mask. The growth
and dynamics of the bacteria were monitored for a
period of 48 to more than 100 h. The bacterial
population grew and spread from the inoculation
point. At each side of the mask the bacteria moved
outside the shaded region and kept spreading until the
UV light killed the population outside the refuge. The
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growth curve of the total population (inside and outside
the refuge) is similar to that of a test tube in which,
after a time delay, the bacteria grow exponentially for a
few hours, but then eventually saturates and remains
constant for several more hours before the population
starts to decay. We monitored each experiment during
the time required for the concentration pattern to be
approximately stable. This time was reached several
hours after the total population saturated, since the
pattern kept changing after the total population
remained constant. To monitor the stability of the
pattern, we used the c2 comparison test between one
profile and the previous profile. When the c2-test
remained close to zero for several hours after the total
population stopped growing, the experiment was
stopped. Typical concentration profile dynamics and
J. R. Soc. Interface (2005)
characteristics for the strain RP9535 are shown in
figure 5.

Using the parameters obtained in §3 and equation
(1.5), the value of the critical mask size was LcZ0.71G
0.08 cm. Under the UV light intensity that we had, the
bacteria went 1.5–2 cm away from the border of the
mask before stopping. The growth under the mask
invariably produced an alternating pattern, which is
not reproduced exactly in every run. Each pattern had
approximately 2–3 peaks cmK1. The alternating pat-
terns in the profiles were visible to the naked eye by
looking very closely at the glass channel after an
experiment was done, as the bacteria aggregated in
vertical stripes under the mask. For the 2 and 4 cm
masks, the time before growth showed in the signal
varied between 3 and 5 h, a time comparable to that for
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bacterial growth in homogeneous space. For smaller
mask sizes this time became larger, as a critical mask
size was being approached. For the 1.5 cm mask the
average time before growth was 12 h; for the 1.2 cm the
average time was 25 h. In this last case, there was large
variation between trials (10, 16 and 49 h). The 1 cm
mask was very close to the critical size, and, therefore,
the delay times were expected to increase significantly.
One of the 1 cm mask’s trials did not grow at all after
70 h; in another trial, the bacteria took 80 h to begin
growing and grew to a maximum concentration whitin
the range of maximum concentrations seen for other
patterns (109–1.2!109 cells mlK1). The maximum con-
centration for each mask size was approximately
constant. This finding disagrees with the Fisher
model, which predicts that the maximum concentration
decreases as the mask size decreases (Kekre & Kuper-
man 2003). The critical mask size was experimentally
found to be 0.8 cm!Lc!1 cm, since no growth was
observed in the 0.8 cm mask for a time of 110 h, during
three trials. This value is 11% higher than 0.71 cm, the
value obtained theoretically. The general character-
istics of the patterns observed are shown in figure 6.

As a control experiment, we performed an exper-
iment with E. coli strain RW120, a wild-type for
J. R. Soc. Interface (2005)
chemotaxis, under the 0.8 cm mask. In this case,
E. coli RW120 grew under the 0.8 cm mask after a
time delay of 32 h. See figure 7. In this case, in
addition to some other differences, the quasi-static
pattern seems to be less stable than with the other
strain. The distance travelled outside the mask was
similar to RP9535, but the population that went
outside the refuge was significantly smaller. Moreover,
it was observed that the two peaks of maximum
concentration inside the refuge are about 2 mm from
the border of the mask as opposed to the RP9535
peaks, which invariably were right on the boundaries
of the refuge. The fact that RW120 grows inside the
0.8 cm mask emphasizes the different behaviour of the
two E. coli strains and confirms that equations (1.1)
and (1.4) are not a reasonable model for chemotactically
driven organisms.
5. DISCUSSION

We have observed the existence of a minimal refuge
size for the sustained growth of non-chemotactic
E. coli. The minimum refuge size corresponds to the
minimal domain in which the bacteria can have
sustained growth and reach a non-zero, quasi-stable
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Figure 7. Growth of E. coli RW120 in the 0.8 cm refuge. Despite a higher motility and higher death rate under UV light than
RP9535, E. coli RW120 grew under the 0.8 cm mask. (a) Growth dynamics. (b) Growth curve and c2-test.
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concentration profile. The value obtained experimen-
tally was 0.8G0.1 cm, in contrast to the 0.71G0.08 cm
obtained theoretically. Escherichia coli RW120, which
has normal chemotaxis mechanisms, was observed
forming chemotactic bands in homogeneous space (no
refuge/desert situation) and growing in the 0.8 cm
refuge, indicating that a one-variable reaction–diffusion
equation is not a reasonable model for chemotactic
bacteria. Consequently, the minimal refuge size theo-
rem cannot be verified with chemotactic E. coli.
J. R. Soc. Interface (2005)
At first glance, it may seem difficult to imagine why
the bacteria E. coli RP9535 would not grow in a 0.8 cm
refuge where there is space to grow, as the RW120
strain shows.

To explain this, it is better to consider the
microscopic situation rather than the reaction–diffusion
model. Each RP9535 bacterium in Brownian motion
has an average net displacement proportional to the
square root of time (xr:m:s:Z

ffiffiffiffiffiffiffiffi
2Dt

p
). This average

displacement corresponds to the average distance
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travelled from the centre (in any direction) by a
bacterium in a certain amount of time. As time passes,
each bacterium has a larger average net displacement;
Consequently the probability that it remains inside the
refuge decreases. If there were no growth inside the
refuge, all bacteria would eventually leave the refuge
and die. Therefore, the situation can be viewed as a
competition between growth and displacement. To have
sustained growth inside the refuge, the growth must
outbalance the displacement of bacteria toward the
outside of the refuge. To compare growth and displace-
ment in our experiments, we considered the average
residence time in the refuge (TRZðDxÞ2=2D, where
Dx is half the size of the refuge) and the average
doubling time of a bacterium (TDZ lnð2Þ=a, where a is
the growth rate). With aZ2.23!10K4 sK1, the dou-
bling time is TDZ51.8 min. As for the average
residence time, we have TRZ94.7 min in the 1 cm
refuge, and TRZ60.6 min in the 0.8 cm refuge. In the 0.
8 cm refuge, the residence time is very close to the
doubling time, meaning that most bacteria do not have
time to reproduce before leaving the refuge. Further-
more, the doubling time as calculated corresponds to
the lower limit of the doubling time, because a is
calculated when the bacteria grow exponentially, which
is only for a few hours, as shown in figure 6a. After that,
the growth rate decreases, and the doubling time
increases. The residence time can then become signifi-
cantly less than the doubling time. Murray (1993) and
Kenkre & Kuperman (2004) postulate that the critical
refuge size in the reaction–diffusion model is a
consequence of the competition between growth and
loss at the boundaries; this explanation is consistent
with the model of a finite number of random walkers
that reproduce only inside the refuge.

As for the strain RW120 (which is a wild-type for
chemotaxis) growing inside the 0.8 cm refuge, we note
that the explanation above does not apply as they do
not move randomly; a bacterium may not necessarily
tend to leave the refuge. The fact that these bacteria
grew in the 0.8 cm refuge is also consistent with the fact
that both in our experiments (figure 3) and in Adler’s
original experiments in capillary tubes (Adler 1966), a
significant number of bacteria remained around the
inoculation point (in a non-motile state) after the
chemotactic bands had formed and travelled outward.

The fact that the critical domain size theorem is
verified with non-chemotactic E. coli does not imply
that the one-variable reaction–diffusion model
(equations (1.1) and (1.4)) is an accurate model for
RP9535 growth at every stage. As shown in figure 3, the
initial growth of RP9535 seems consistent with diffusion
and growth only. When the total growth is reduced, the
bacteria tend to form multi-peaked patterns in space.
To model pattern formation more complex models
would be needed. The one-variable reaction–diffusion
model could be an approximation for the initial stages of
growth. This is consistent with the fact that the pattern
formation of bacterial colonies seems to be associated
with lack of nutrients (Ben-Jacob et al. 1995, 2000;
Matsushita et al. 1998). At the initial stage of growth
there are plenty of nutrients available, and the bacteria
reproduce fast. As the nutrients become scarce, pattern
J. R. Soc. Interface (2005)
formation is observed as the bacteria compete for
resources and employ survival mechanisms.

A one-variable reaction–diffusion system (equation
(1.1)) describes what is essentially a system of non-
interacting particles: each bacterium moves around
randomly and reproduces according to f(c), indepen-
dently of each other. However, chemotactic bacteria
communicate with each other. This can be either
indirectly, via the local concentration of chemoattrac-
tants initially present in the medium, or directly since
under certain circumstances E. coli can excrete
chemoattractants themselves (Budrene & Berg 1995;
Mittal et al. 2003; Park et al. 2003). As a consequence,
bacteria tend to form aggregates of high concentration.
We found that a critical size is present for non-
chemotactic E. coli, which implied that non-chemotac-
tic bacteria behave like non-interacting particles (at
least when there are plenty of nutrients available). On
the other hand, the result cannot be verified with
chemotactic bacteria, which suggest that they interact
with each other. The idea that chemotaxis is the main
way by which E. coli bacteria communicate with each
other is supported by Park et al. (2003), and the main
result from this paper reinforces that idea.

In summary, we have shown that the prediction of a
critical domain size in one-variable reaction–diffusion
systems can be verified in non-chemotactic E. coli
populations. This implies that non-chemotactic E. coli
behave as non-interacting particles, as opposed to
E. coli with normal chemotaxis mechanisms.
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kindly providing the strain RP9535 and for his advice, Eric
Monson for technical help and helpful discussions and
Philippe M. Binder for his help in writing this document.
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